47,752 research outputs found

    Words are Malleable: Computing Semantic Shifts in Political and Media Discourse

    Get PDF
    Recently, researchers started to pay attention to the detection of temporal shifts in the meaning of words. However, most (if not all) of these approaches restricted their efforts to uncovering change over time, thus neglecting other valuable dimensions such as social or political variability. We propose an approach for detecting semantic shifts between different viewpoints--broadly defined as a set of texts that share a specific metadata feature, which can be a time-period, but also a social entity such as a political party. For each viewpoint, we learn a semantic space in which each word is represented as a low dimensional neural embedded vector. The challenge is to compare the meaning of a word in one space to its meaning in another space and measure the size of the semantic shifts. We compare the effectiveness of a measure based on optimal transformations between the two spaces with a measure based on the similarity of the neighbors of the word in the respective spaces. Our experiments demonstrate that the combination of these two performs best. We show that the semantic shifts not only occur over time, but also along different viewpoints in a short period of time. For evaluation, we demonstrate how this approach captures meaningful semantic shifts and can help improve other tasks such as the contrastive viewpoint summarization and ideology detection (measured as classification accuracy) in political texts. We also show that the two laws of semantic change which were empirically shown to hold for temporal shifts also hold for shifts across viewpoints. These laws state that frequent words are less likely to shift meaning while words with many senses are more likely to do so.Comment: In Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (CIKM2017

    Resonant Relaxation in Electroweak Baryogenesis

    Get PDF
    We compute the leading, chiral charge-changing relaxation term in the quantum transport equations that govern electroweak baryogenesis using the closed time path formulation of non-equilibrium quantum field theory. We show that the relaxation transport coefficients may be resonantly enhanced under appropriate conditions on electroweak model parameters and that such enhancements can mitigate the impact of similar enhancements in the CP-violating source terms. We also develop a power counting in the time and energy scales entering electroweak baryogenesis and include effects through second order in ratios ϵ\epsilon of the small and large scales. We illustrate the implications of the resonantly enhanced O(ϵ2){\cal O}(\epsilon^2) terms using the Minimal Supersymmetric Standard Model, focusing on the interplay between the requirements of baryogenesis and constraints obtained from collider studies, precision electroweak data, and electric dipole moment searches.Comment: 30 pages plus appendices, 7 figure

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa

    Weak local rules for planar octagonal tilings

    Full text link
    We provide an effective characterization of the planar octagonal tilings which admit weak local rules. As a corollary, we show that they are all based on quadratic irrationalities, as conjectured by Thang Le in the 90s.Comment: 23 pages, 6 figure

    An Ultra-Stable Referenced Interrogation System in the Deep Ultraviolet for a Mercury Optical Lattice Clock

    Full text link
    We have developed an ultra-stable source in the deep ultraviolet, suitable to fulfill the interrogation requirements of a future fully-operational lattice clock based on neutral mercury. At the core of the system is a Fabry-P\'erot cavity which is highly impervious to temperature and vibrational perturbations. The mirror substrate is made of fused silica in order to exploit the comparatively low thermal noise limits associated with this material. By stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity, and including an additional link to LNE-SYRTE's fountain primary frequency standards via an optical frequency comb, we produce a signal which is both stable at the 1E-15 level in fractional terms and referenced to primary frequency standards. The signal is subsequently amplified and frequency-doubled twice to produce several milliwatts of interrogation signal at 265.6 nm in the deep ultraviolet.Comment: 7 pages, 6 figure

    Critical Current Studies on Deformed Nb-Ti Strands

    Get PDF
    The Nb-Ti hard conductors used in LHC dipole and quadrupole magnets are Rutherford cables composed of several tens of strands. During the cabling process, the strands are severely compacted especially at the thin edge of the cable. In order to assess, on the whole wire length, the deformation effect on the transport current of the wires, LHC-type Nb-Ti superconducting strands of various types were flattened by means of rollers. The critical current was then measured as a function of deformation and applied magnetic field at both 4.3 K and 1.9 K. The measurements were performed for both orientations (flat face perpendicular or parallel to magnetic field). The critical current density anisotropy of such deformed strands and the correlation with magnetization effects are discussed. This study permits to better understand and to quantify the critical current degradation of few percent observed in strands due to cabling. Comparisons with wires extracted from Rutherford cables are presented

    Critical Current Density in Superconducting Nb-Ti Strands in the 100 mT to 11 T Applied Field Range

    Get PDF
    The knowledge of the critical current density in a wide temperature and applied magnetic field range is a crucial issue for the design of a superconducting magnet, especially for determining both current and temperature margins. The critical current density of LHC-type Nb-Ti strands of 0.82 and 0.48 mm diameter was measured by means of critical current and magnetization measurements at both 4.2 K and 1.9 K and for a broad magnetic field range (up to 11 T). For the magnetic field range common to both measurement methods, critical current density values as extracted from transport current and from magnetization data are compared and found fairly consistent. Our experimental data are compared to other sets from literature and to scaling laws as well

    A TQFT associated to the LMO invariant of three-dimensional manifolds

    Full text link
    We construct a Topological Quantum Field Theory (in the sense of Atiyah) associated to the universal finite-type invariant of 3-dimensional manifolds, as a functor from the category of 3-dimensional manifolds with parametrized boundary, satisfying some additional conditions, to an algebraic-combinatorial category. It is built together with its truncations with respect to a natural grading, and we prove that these TQFTs are non-degenerate and anomaly-free. The TQFT(s) induce(s) a (series of) representation(s) of a subgroup Lg{\cal L}_g of the Mapping Class Group that contains the Torelli group. The N=1 truncation produces a TQFT for the Casson-Walker-Lescop invariant.Comment: 28 pages, 13 postscript figures. Version 2 (Section 1 has been considerably shorten, and section 3 has been slightly shorten, since they will constitute a separate paper. Section 4, which contained only announce of results, has been suprimated; it will appear in detail elsewhere. Consequently some statements have been re-numbered. No mathematical changes have been made.

    Creep via dynamical functional renormalization group

    Full text link
    We study a D-dimensional interface driven in a disordered medium. We derive finite temperature and velocity functional renormalization group (FRG) equations, valid in a 4-D expansion. These equations allow in principle for a complete study of the the velocity versus applied force characteristics. We focus here on the creep regime at finite temperature and small velocity. We show how our FRG approach gives the form of the v-f characteristics in this regime, and in particular the creep exponent, obtained previously only through phenomenological scaling arguments.Comment: 4 pages, 3 figures, RevTe
    corecore